

Developing a Chemical Reconnaissance Behavior for Unmanned Ground
Vehicles Using the OneSAF Battlefield Simulation Tool

Dr. MaryAnne Fields
Mr. Tom Haug

ABSTRACT
One of the goals of the U.S. Army Ground Robotics Research
Program is to develop individual and group behaviors that
allow the robots to contribute to battlefield missions such as
reconnaissance. By using simulation tools, we are able to
develop, debug and test behaviors before porting them to
actual robotic platforms. This affords the researchers the
opportunity to expeditiously evaluate the behaviors in a
diverse set of environments and to explore variations in
behavior algorithms without tying up limited robotic resources
or putting these robotic vehicles at risk. This report describes
our efforts to develop a proof-of-principal behavior initiated in
simulation then ported to a team of surrogate robotic
platforms. The issues discovered in porting the algorithm
from simulation to the robotic platform are discussed. The
report concludes with a discussion of possible extensions to
the basic tool.

KEYWORDS: Unmanned Ground Vehicle, Tactical Behaviors,
Autonomous, One Semi-Automated Forces, Reconnaissance, NBC
Mapping, Scout

1. INTRODUCTION
The primary focus of the U.S. Army Ground Robotics
Research Program is autonomous mobility. As unmanned
ground vehicles (UGVs) become more capable of
autonomously negotiating complex cross country and urban
environments, it becomes possible to develop individual and
group behaviors that will allow the robots to contribute to
battlefield missions such as reconnaissance. Since
experimental time on the current robotic vehicles, the
experimental unmanned ground vehicles (XUV), is divided
between many organizations, it is essential that we develop a
simulation tool that will allow us to develop and test behaviors
in simulation before porting them to the actual vehicle. Other
benefits of developing behaviors in simulation are the ability
to expeditiously exercise the behavior in varied environments,
and the opportunity to make mistakes without catastrophic
effects on the robot. In this report, we describe our efforts to
develop a chemical reconnaissance behavior for a team of
three XUVs.

Some general background on the chemical reconnaissance
mission, as outlined in the Scout Platoon field manual, is
presented as the basis for the robotic behavior algorithm. The
One Semi-Automated Forces (OneSAF) simulation tool and
the modifications that have been made to OneSAF to support
the behavior development efforts are discussed. The paper

includes a discussion of the basic behavior algorithm as well
as enhancements required to add robustness to the behavior in
the simulation environment. The next step was to port the
behavior algorithm to the robotic platform. Although the
ultimate target vehicle for the behavior is the XUV, surrogate
robots were used to demonstrate the behavior and to facilitate
experimentation and the evaluation of the behavior. The
issues discovered in porting the behavior will be discussed.
The report concludes with a discussion of potential extensions
to the basic behavior development tool.

2. BACKGROUND ON THE MISSION
We use the OneSAF simulation tool to develop autonomous
behaviors for ground robotic systems. The scout mission was
selected as the application to demonstrate the utility of ground
robotics and to showcase the advances in autonomous
mobility. There are many aspects of the overall Scout mission
including reconnaissance, target acquisition and surveillance
(RSTA), classification of terrain features and locating
obstacles such as minefields or regions contaminated by
nuclear, biological or chemical (NBC) weapons. As a proof-
of-concept, we focused our initial behavior development
efforts on the mission to locate and mark a region
contaminated by an NBC weapon, specifically a persistent
chemical contamination. This mission can be accomplished
with minimal operator intervention and integrated with the
existing Demo III XUV using currently available
technologies.

We adapted our behavior from the description of the manned
chemical reconnaissance mission given in the FM 17-98 Scout
Manual [1]. This mission, as performed by manned scouts,
uses existing chemical sensors that alert the user of the
existence of contamination. We assume that these sensors can
be mounted on the XUV and that signals from these sensors
can be interpreted by the XUV software. In this work, we
focus on locating and mapping a persistent contaminating
agent that has already been released and settled on the surface
of the terrain. The tactical use of these agents is similar to the
use of minefields. Such agents are used to canalize friendly
forces; or to deny them access to intersections, likely avenues
of approach, or other key terrain features. Figure 1 shows
graphically how the mission is accomplished.

The mapping portion of the mission is accomplished with
three vehicles. The first, designated as the base vehicle,
establishes the near and far side limits and the base line. The
wingmen determine the left and right limits. The movement

of the three vehicles is conditional, based on several factors
including positive or negative detections; the vehicle’s
direction of travel; the reconnaissance direction of travel; the
base line; and the far side limit. The left, right, and near side
limits are defined by the bounding of the vehicles but are not
considered in the decision process. The end result is a
rectangle, formed by the four limit lines, that bounds the
contamination. This mission is only intended to provide
sufficient information to maneuver the main body, not to
provide a detailed map of the contamination. The step-by-step
approach and the hazardous nature of the task both make this a
desirable mission for a robotic vehicle.

Figure 1. Example of Mapping of Chemical Contamination [1]

3. THE ONESAF SIMULATION TOOL

3.1 BASELINE FEATURES
OneSAF [2] is an interactive battlefield simulation tool
developed by the Simulation Training and Instrumentation
Command (STRICOM) that simulates the behavior of units,
their vehicles, and their weapon systems to a level of realism
sufficient for training and combat development. It provides
users with the capability to create and control units ranging in
size from individual combatants and platforms through
battalions. The simulation package also includes a
representation of the physical environment, including terrain,
diurnal cycle and weather, and its effect on simulated
activities and behaviors.

OneSAF has many desirable features for developing and
testing robotic behaviors. It is an easy-to-use, interactive tool
that allows users to design test scenarios. Currently, there are
several hundred different types of units that can be used in
these scenarios. These units range in size from individual
soldiers to battalions. The units include both air and ground
systems and represent both US and foreign systems. The
actions of these units can be controlled by the user or, to a
limited extent, controlled by OneSAF behavior algorithms.
Users can add new units and behavior algorithms to the base

systems to support specific projects. There are many terrain
databases available for OneSAF. These terrain databases
include U.S. Army installations such as Ft. Knox, Ft. Hood
and the National Training Center as well as parts of Europe
and Asia. In addition, commercial packages such as MultiGen
Creatortm 11 can be used to provide 3-dimensional visualization
of the terrain databases.

Unfortunately, OneSAF does have limitations as a tool for
developing and testing robotic behaviors. These limitations
can be grouped into two categories – terrain database
limitations and entity behavior limitations.

Most of the terrain databases that are available for OneSAF
have elevation posts spaced 30-125 meters apart. This results
in very a “smooth” terrain surface that does not accurately
model the terrain encountered by a small vehicle. Many
terrain features, such as trees, wooded areas, roads, rivers, and
buildings are “layered” on top of the elevation grid as linear or
polygonal abstract features. Although these abstract features
do affect the activities of the simulated entities, they are not
directly sensed by the sensory equipment attached to entities.
It is difficult to examine the robustness of behaviors that
involve autonomous mobility without including a model of
how the driving sensors acquire information about the
environment. Also, most OneSAF terrain databases do not
contain ditches, holes, rocks, boulders, and other small
obstructions that present significant obstacles for ground
robots.

The current OneSAF mobility behavior algorithms assume a
competent human driver is controlling the system. This driver
model “perceives” and responds appropriately to obstacles in
the terrain, updating the vehicle position and velocity several
times a second. In fact, since the driver is assumed to be
competent, most OneSAF terrain databases do not contain
small mobility obstacles to stimulate the driving algorithms.
We cannot assume a competent driver for the Demo III
program since a major issue is the robustness of its driving
algorithms. We have not fully investigated other behavior
algorithms in OneSAF, however, many of the algorithms are
trying to simulate human actions so they may use information
and intelligence not yet available to ground robots. In general,
we would like to replace the OneSAF behavior algorithms
with a better representation of robotic behavior.

3.2 ARL Extensions
We have extended the basic features of the OneSAF
simulation code to better represent ground robotic features.
Our work can be divided into two categories – terrain
modifications and robot-specific modifications. The terrain
modifications overcome some of the limitations of the terrain
databases described in the previous section, providing the

1 MultiGen Creator is a trademark of the MultiGen-Paradigm
Corporation, 2044 Concourse Drive San Jose, CA 95131.

simulated robot with a rich environment containing both large
and small obstructions that need to be sensed and incorporated
into its mobility plan. There are many different approaches to
modifying the OneSAF terrain databases to support mobility
analysis for robotic vehicles, a detailed discussion of these
modifications is found in Fields [7]. In this section, we briefly
describe the mobility obstacle editor that we used in analyzing
and developing this behavior algorithm.

The mobility obstacle editor allows researchers to introduce
two types of obstacles, positive obstacles, representing rocks,
bushes, and other obstacles above the ground plane, and
negative obstacles, representing ditches, culverts, and other
holes in the ground plane to an existing terrain database to
stimulate the perception and planning processes on the robotic
vehicle. . Using the editor shown in Figure 2, researchers can
control the size, shape, number, and distribution of these
obstacles. Positive obstacles are show as dark gray, negative
obstacles are shown in light gray. By setting the detectability
and average detection distance parameters in the editor
window, the researchers control the detection of the obstacles.
Using the obstacle editor several times results in the
heterogeneous group of obstacles such as the distribution
shown in Figure 2. All the information for the obstacles is
saved so that the distribution can be duplicated in subsequent
simulations.

Figure 2. The Obstacle Editor.

In this research, we needed a method to contaminate a region
on the simulated battlefield. By designing an editor similar to
the obstacle editor, we can place contaminated regions on the
battlefield. A contamination is shown in Figure 4. The
parameters shown in the editor window determine the size,
shape, and location of the region. On the map, the
contaminated area is indicated by the gray polygon. Again,

the parameter settings can be saved for use in other
simulations and the editor can be used multiple times. In this
research, we use both the obstacle and contaminate editors to
test and debug the chemical reconnaissance behavior.

Figure 3. A OneSAF Simulation Display Showing the World

Model Information for an Unmanned Ground Vehicle

In addition to the obstacle and contaminate editors, we
developed algorithms of robotic driving perception and
robotic mobility which have been documented previously [8].
These algorithms model the perception and planning processes
of the robot. The perception algorithms are “aware” of the
mobility obstacles previously discussed. At each time step,
the robot constructs a world model showing detected obstacles
and features within a 50 m radius of the robot. The detection
of a specific obstacle is a random variable whose probability
distribution function is specified by the detectability
parameters. Figure 3 shows a world model superimposed on
the terrain map. Polygons outlined in light gray have been
detected; the remaining polygons are out of the range of the
driving sensor.

4. ALGORITHM DESCRIPTION
In this section, we describe the basic algorithm for a OneSAF
robotic team to locate and map a contaminated region on the
ground. There are some differences between the robotic
mission and the manned scout mission. Our simulation begins
with the three-vehicle section that is normally organized after
initial detection. This eliminates the need to model the entire
platoon and simplifies the process of reorganizing the platoon
once chemical contamination is detected. Later, we can
extend our basic behavior to include a platoon of vehicles
participating in the mission. We also did not require the
robots to use a bounding overwatch movement technique.
Bounding overwatch can be added later without changing the
underlying mapping behavior.

We have broken the mapping algorithm into five distinct
phases: (1) Locating the Area, (2) Regrouping, (3)
Establishing the Baseline, (4) Mapping the Region, and (5)
Completing the Mission. Each phase represents a distinct
behavior involving one or more of the robots. For now, we
assume that transition between the phases is instantaneous – in
reality, the transition times depend on the speed and reliability
of the robots’ communication systems.

4.1 Phase I: Locating the Area
In this phase the robots must find the contaminated region.
We assume that the soldier/operator has intelligence
information giving an approximate location of the
contaminated area. From this information, the operator
specifies an initial rally point that forces the robots to cross the
suspected area. Figure 4 shows an example map – the
suspected area is a large circular region shaded gray, the
actual contaminated region is darker irregularly shaped
polygon shaded. Keep in mind that the robot and the operator

Rally Point

Initial location of scout unit

Rally Point

Initial location of scout unit

Figure 4. A Battlefield Map Showing Region of Suspected

Contamination (gray) and Actual Contamination (green)

don’t know the location of the contamination a priori. Just as
on the battlefield, it is possible for the operator to select a
search path that misses the contamination. In this case the
operator picked a rally point that forced the robots to travel
through the actual contamination. During this phase, the
robots move toward the rally point along parallel paths. The
spacing between the robots can be specified by the operator.
This phase ends when one of the robots makes contact with
the contaminated region or all the robots reach the rally point.
The nuclear, biological, chemical (NBC) sensor model
assumes perfect instantaneous detection so that any contact
with the contaminated region will result in a detection. Unlike
the NBC sensor described in Section 2, this sensor samples the
environment continuously. If all the robots reach the rally
point, it is up to the operator to re-evaluate the mission. He
may choose to send the robots through the region again,
continue the search to a new rally point or he may choose to
abort the mission.

4.2 Phase II: Regrouping
Once the robot team makes contact with the contaminated
area, the team reorganizes itself to efficiently map the region.
The robot which made the initial contact is designated as the
base robot, the other two vehicles are designated as the left
wingman and the right wingman. In the current algorithm, the
left and right wingman positions as assigned arbitrarily. With
future improvements, it will be possible to use information
about the relative positions of the robots to make these
assignments. In this phase, the base vehicle is stationary.
During the second phase, the left and right wingmen prepare
for the remainder of the mapping mission by repositioning
themselves at a rendezvous point 50 meters behind the current
position of the base vehicle. (Note: This differs slightly from
the task outlined in the field manual.) Figure 5 shows a robot
team positioning themselves in the regrouping phase.

Figure 5. Phase II. The Regrouping Phase

4.3 Phase III: Establishing the Baseline
In the third phase of the mapping mission, the base robot
needs to determine the extent of the contaminated region. It
travels through the contaminated region towards the rally
point to determine the extent of the contaminated region. As a
guide to the two wingman, the base robot determines a far side
limit 200m beyond the last positive detection, which is
perpendicular to the baseline at its current position. Figure 6
shows a robot team at the completion of the third phase and
the Far Side Boundary line.

4.4 Phase IV: Mapping the Region
The left and right wingmen map the contaminated region in
the fourth phase of the mission. Before they start, the
wingmen know, from communications with the base robot, the
location and direction of the baseline and the location of the
far side limit. The left wingman will map the region in a
clockwise direction and the right wingman will map the region
in a counter-clockwise direction.

To map the contaminated region, the robots execute a series of
FIND and REPOSITION steps. In the FIND step, the goal is
to find the contamination. Normally in this step, the robot
drives in a direction parallel to the baseline until it finds
contamination. In the REPOSITION step, the goal is to move
200m from the contaminated region then set up for the next
FIND step.

Figure 6. Phase III. Establishing the Baseline and Far Side Boundary

At each positive detection the algorithm must determine the
appropriate action. The REPOSITION transition results in a
900 turn in a direction that is dependent on the vehicle, left or
right wingman. Transitions from FIND-to-REPOSITION and
REPOSITION to FIND is all that is required to map a convex
shape as shown in Figure 7.

Figure 7. Phase IV. Establishing the Left and Right Side Boundary

In reality, the shape of the contaminated region depends on the
prevailing winds, the shape of the terrain, the density and type
of features on the terrain surface, as well as the delivery
system for the contaminant. A realistic contaminated area
might contain concavities, holes, or even disconnected sub-
regions. No algorithm can be designed to cover every

contingency, but defining few additional transitions greatly
enhances the performance of the algorithm.

Figure 8. Mapping a Concave Polygon

In Figure 8, two paths are shown for the left wingman. The
path designated by F1-4 and R1-3 is the result of the simple
approach outlined above. The robot must travel 200m in a
REPOSITION mode. This puts the robot in the middle of the
contamination at the end of R2. At this point it executes a
FIND, F3, turning parallel to the baseline and immediate
detection results in a change of state to R3 which gets the
robot out of the contamination, but failing to map a large
portion of the contamination. The path outlined by F1, R1,
F2, R2 and then r3-5 and f3-6 results in mapping the entire
area and can be accomplished with only a few added
decisions. Adding two additional transitions, FIND-to-FIND,
and REPOSITION-to-REPOSITION, allows mapping of an
arbitrary polygon. In the new path the robot transitions from
R2 to r3 immediately on a positive detection. The FIND-to-
FIND transition is required as shown for f5. Continuing along
f5 would never accomplish the mission, thus the distance and
the direction traveled can be used to trigger a FIND-to-FIND
transition.

Figure 9. Adjusting Far Side Boundary

4.5 Phase V: Completing the Mission
In the final phase of the mission, the wingmen rejoin the base
robot. Figure 9 illustrates another situation that can arise. In
this case, the concavity is on the far side and the base robot
incorrectly identifies the far side boundary. As the wingmen
attempt to rendezvous with the base robot, they contact the
contaminated region. In the extended algorithm, this
information is passed to the base robot. The base robot travels
along the baseline until it can establish a new far side
boundary. The wingmen resume the mapping phase, using the
new far side boundary as an exit criteria. Presumably, once
the robot team has reassembled, they would perform
decontamination procedures and prepare for any further
missions from the operator.

5. Adding Robustness
In this section, we describe our efforts to make the mapping
algorithm more robust. We concentrate on two problems –the
loss of one or more robots, and performing the mission in
complex terrain.

5.1 Loss of One or More Robots
The algorithm as presented in the previous sections requires
three robots to map a contaminated region. What if some of
the robots sustain ballistic damage or break down? Can the
mission continue? The mission can continue provided there is
a way to monitor the progress and health of the robots.

Extending the current algorithm so that it automatically adapts
to the loss of one or more robots requires the mapping
behavior to “monitor” the status of the robots, and some
adaptation to the mapping phase. Monitoring the status of the
robots requires some simple communication between the
robots and a central control unit – the robots periodically
report their position and status. The robots also report the
location of contaminated points, as they encounter these
points. If a robot fails to report (or reports that it is damaged),
it is assumed to be damaged and unavailable for the remainder
of the mission. Adjusting the mapping phase involves fixing
the length of the FIND step and using a new exit criteria to
end the mapping phase. As an example, consider two cases –
the loss of a single robot in the Phase I. and the loss of two
robots in Phase I. These two examples can be generalized to
cover the loss of robots at any time in the mission.

Consider the loss of a single robot in the Phase I. At this point
in the mission, all the robots are looking for the contaminated
area- losing a single robot will not significantly change this
phase of the mission. However, once the initial contaminated
point has been discovered, the robots must reorganize
themselves to map the region (Phase II). In the reduced robot
team algorithm, we eliminate the role of the base robot and
proceed directly to Phase IV, the mapping phase. This leaves
the two remaining robots to map the outer edge of the
contaminated region without prior knowledge of the location

of the far side boundary normally determined by the base
robot in Phase III. In the reduced robot team algorithm, the
maximum length of the FIND step is a fixed length, forcing
the robots to continue probing the area until they are within a
fixed distance of each other. Figure 10 shows a comparison
between a 3-robot team mapping a contaminated area using
the original algorithm and a 2-robot team mapping the region
with the adjusted algorithm. In this illustration, the algorithms
perform similarly on the left side of the area. On the right
side, the reduced robot team algorithm must “map” the area to
determine the far side boundary. Also shown in Figure 10 is
the procedure for a single robot to perform the mission if two
vehicles are lost.

(a)

 (b)

(c)

Figure 10. Mapping the Contaminated Area with: (a) 3-Robot Team,
(b) 2-Robot Team, (c) 1-Robot Team

5.3 Performing the Mission in Complex Terrain
In this section, we limit our discussion of complex terrain to
terrain surfaces containing a significant number of mobility
obstacles that force the robots to deviate from their planned
course.

In some ways, performing the mission in complex terrain is
similar to performing the mission with a reduced robotic team.
Complex terrain can degrade the mobility of one or more of
the robots to such an extent that these robots are “lost” to the
mission. In the previous discussion, the mapping behavior
monitored the status of the three robots as they performed the
mission. Adapting the mission to complex terrain requires the
behavior to monitor the progress of the robots, as well their
status. Progress measures the change in the distance between
the robot and its current goal for a given time period.

The goals themselves are a function of the phase of the
mission and the robot’s particular assignment. In the first
phase, progress measures the change in distance between the
robots and the rally point. In Phase II only the wingmen are
moving, progress for a wingman depends on the distance to
the rendezvous point. Recall that the base robot crosses the
contaminated region in Phase III moving toward the Phase I
rally point. We measure the progress of the base robot in
Phase III by measuring the changes in distance between the
base robot and the Phase I rally point. In Phase IV, progress
depends on the distance between the wingmen and the far side
limit. In Phase V, progress depends on the distance between
the wingmen and the base robot.

In this work, we have extended the algorithm for two cases –
lack of progress of the base robot in Phase III and a significant
difference in the progress of the wingmen in Phase IV. In
both cases, we will treat lack of progress the same as the loss
of a robot – it simplifies the algorithms.

6. Porting the Behavior to a Surrogate Robotic
Platform
The next step in this research effort was to port the mapping
algorithm from the simulation package to a robotic platform.
Two surrogate robots, ATRV-JrTM from iRobot, Inc., shown in
Fig. 12, were selected to demonstrate the mapping behavior on
actual robotic platforms. The robots are four wheeled, skid-
steered platforms that can be used indoors and outdoors. The
ATRV-Jr’s sensors include visible spectrum cameras,
ultrasonic range sensor array, GPS, an inertial measurement
unit, a compass and a tilt sensor. To simplify the hardware
and experimental requirements, the cameras were used as
surrogate chemical sensors, and yellow plywood disks were
used to create contaminated regions. This allowed us to focus
on the algorithm and not be distracted by the integration of
sensors and the use of chemical simulants.

Since there were only two robotic vehicles available, we
demonstrated the reduced robot team algorithm discussed in
Section 4.2 (i.e. we assume that the base robot was lost and
that the two remaining robots assume the roles of the left and
right wingman). Adding the base vehicle would have
simplified the mapping process, giving the wing vehicles a
baseline and an initial far side limit.

Our experimental setup consisted of the two ATRV-Jr. robots,
an operator, and a laptop computer that served as the operator
control station. Computer code for the robots and the laptop
was written for the Red Hattm 2 6.2 operating system and used
the Mobilitytm 3 C/CORBA libraries provided by iRobot. A
wireless Ethernet connected the robots and the operator’s
control station.

Although the basic chemical reconnaissance behavior is the
same for both the real and simulated robots, there are
differences in the computer programs controlling each robot.
First, even though the intent of the battlefield simulation tool
is to model the real world, real and simulated robots interact
differently with their respective environments. Service
programs such as movement, communication, and sensing
need to be written specifically for each environment. The
actual behavior program depends on the available
programming environment. In OneSAF, behaviors are written
as a finite state machine that is translated into C code by the
programming environment. On the robot, the chemical
reconnaissance behavior was written directly in C.
We wanted to demonstrate that the robot team could conduct
the mapping behavior without significant operator
involvement. In our experiments, the operator had two roles –
send the “start mission” signal to the robots, and act as safety
officer for the experiment. Each robot conducted its portion
of the mission independently. Communication was minimal.
The robots reported contact points to the operator’s computer.
The contact points were used to draw a map on the OCU
screen so that the operator could compare the shape of the
mapped region to the shape of the actual region on the ground.

The experiments were successful – the robots were able to
consistently map the surrogate contaminated region. We
demonstrated both the 2-robot team and the single-robot team
mapping procedure. The experiments identified some issues
that are important future behavior development work. First is
the importance of modeling system latencies. In our behavior,
there were two major sources of latencies – latencies
associated with detecting the contamination and latencies
associated with communication. In the real world, detection is

2 Red Hat 6.2 is a trademark of the Red Hat Corporation, ,1801
Varsity Drive, Raleigh, NC 27606

3 Mobility is a trademark of the iRobot Corporation, 32 Fitzgerald
Dr., Jaffrey, NH 03452.

not instantaneous –the robot may actually drive into the
contamination before it registers a detection. Communication
latencies are important to consider for future extensions to this
work – monitoring the behavior and adjusting the loss of a
robot depend on reliable communication between the robots
and the OCU.

Figure 11. ATRV-JrTM Robots from iRobot

6. Conclusions
This research represents a proof of concept – we were able to
develop a behavior using computer simulation then port it to
actual robotic platforms. We chose the chemical
reconnaissance behavior because it was a potential mission for
robot scout unit and because it was algorithmic in nature. We
developed the basic algorithm using a modified OneSAF
simulation tool. Using simulation experiments to iteratively
test our algorithm, we were able to improve the basic
algorithm to respond automatically to loss of robots due to
attrition or terrain conditions. By using laboratory robots in a
controlled environment, we were able to focus on the
development of the behavior without having to implement a
full autonomous mobility package. The current
implementation of the chemical reconnaissance mission on
these robots does not take advantage of communications
between robots. Future efforts in behavior development will
take advantage of the ability of the robots to communicate
with each other to more efficiently accomplish tasks.

Developing tactical behaviors in a simulation has many
benefits. As discussed in this report, using the enhanced
OneSAF simulation to represent current UGV capabilities
facilitates the development of behaviors that can be readily
transitioned to current platforms. The simulations can also
point the way to new technology developments and
capabilities required to accomplish more complex behaviors.

This research effort demonstrates that, with a realistic
representation of an unmanned ground vehicle and its

environment, a computer simulation is a viable tool for
building tactical behaviors for unmanned ground vehicles.
The current project focused on a single team behavior that had
to be designed from scratch using the simulated world to test
and debug the algorithm. By structuring our future research
so that we develop libraries of common skills and behaviors
first, we will be able to combine them into complex individual
and group behaviors. As the library of common skills and
behavior grows, development and testing time for complex
behaviors may decrease since each of the common behaviors
and skills will be well characterized.

References .
[1] “FM 17-98 Scout Manual”,
http://www.adtdl.army.mil/cgi-bin/atdl.dll/fm/17-98/toc.htm,
Headquarters, Department of the Army, Washington, DC,
April 10, 1999.

[2] Witman, R. and Harrison, C., “OneSAF: A Product Line
Appraoch to Simulation”, Technical Report, Contract Number
DAAB07-01-C-C201. The Miter Corporation, 2001.

[3] T. Ioerger, R. Voltz, and J. Yen, “Modeling Cooperative,
Reactive Behaviors on the Battlefield with Intelligent Agents”,
proceedings of the 9th Conference on Computer Generated
Forces and Behavior Representation, 2000.

[4] R.. Hill, J. Gratch,,P. Rosenbloom and R. Whitney,
“Flexible Group Behavior: Lessons Learned Building Virtual
Commanders”, proceedings of the 9th Conference on
Computer Generated Forces and Behavior Representation,
2000.

[5] A. Courtemanche amd Charles E. Campbell, “Unified
Entity Maneuver”, Proceedings of the 9th Conference on
Computer Generated Forces and Behavior Representation,
2000.

[6] J. Albus, “4D/RCS Reference Model Architecture for
Unmanned Ground Vehicles”, Proceedings of the SPIE Vol.
3693, AeroSense Session on Unmanned Ground Vehicle
Technology, Orlando FL, April 7-8, 1999.

[7] M. Fields, “Modifying ModSAF terrain Databases to
Support the Evaluation of Small Weapons Platforms in
Tactical Scenarios”, ARL-TR-1996, Army Research
Laboratory, Aberdeen, Maryland, August 1999.

[8] M. Fields, “Designing a Behavior Development
Environment to Support the Demo III Robotics Program”,
Proceedings of the SPIE Vol. 4364, AeroSense Session on
Unmanned Ground Vehicle Technology, Orlando FL, April 7-
8, 2000.

[9] Red Hat, Inc. Red Hat Linux 6.2 Raleigh, NC, 1999.

